The second Hankel determinant of the logarithmic coefficients of strongly starlike and strongly convex functions
نویسندگان
چکیده
Abstract Sharp bounds are given for the second Hankel determinant of logarithmic coefficients strongly starlike and convex functions.
منابع مشابه
On the quadratic support of strongly convex functions
In this paper, we first introduce the notion of $c$-affine functions for $c> 0$. Then we deal with some properties of strongly convex functions in real inner product spaces by using a quadratic support function at each point which is $c$-affine. Moreover, a Hyers–-Ulam stability result for strongly convex functions is shown.
متن کاملdeterminant of the hankel matrix with binomial entries
abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.
15 صفحه اولApplications of Srivastava–attiya Operator to the Classes of Strongly Starlike and Strongly Convex Functions
Srivastava-Attiya operator is used to define some new subclasses of strongly starlike and strongly convex functions of order β and type α in the open unit disk U . For each of these new function classes, several inclusion relationships are established. Some interesting corollaries and applications of the results presented here are also discussed. Mathematics subject classification (2000): 30C45...
متن کاملSecond Hankel determinant for bi-starlike and bi-convex functions of order β
In this paper we obtain upper bounds for the second Hankel determinant H2(2) of the classes bi-starlike and bi-convex functions of order β, which we denote by S∗ σ(β) and Kσ(β), respectively. In particular, the estimates for the second Hankel determinat H2(2) of bi-starlike and bi-convex functions which are important subclasses of bi-univalent functions are pointed out.
متن کاملAn upper bound to the second Hankel functional for the class of gamma-starlike functions
The objective of this paper is to obtain an upper bound to the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$ for the function $f$, belonging to the class of Gamma-starlike functions, using Toeplitz determinants. The result presented here include two known results as their special cases.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas
سال: 2023
ISSN: ['1578-7303', '1579-1505']
DOI: https://doi.org/10.1007/s13398-023-01427-5